师资队伍
刘晓艳

undefined

职称:教授(博士生导师)

系所:环境科学与工程系

办公室:校本部东区环化楼

电话:021-66137767

E-mail:lxy999@shu.edu.cn


个人简介

刘晓艳教授,山东商河人,现任3499cc拉斯维加斯教授、博士生导师;哈尔滨工业大学环境工程专业博士毕业,东北石油大学地球化学专业硕士毕业,吉林师范大学化学专业本科毕业。先后在石油地球化学和环境地球化学研究方向开展研究工作,在多年从事土壤-地下水污染环境地球化学领域研究中,针对各种有机与无机污染物在土壤-地下水系统中的分布特征、迁移转化规律、污染风险管控与修复策略、环境材料阻控技术与生态修复技术等方面开展了卓有成效的研究工作,还对石油污染物的自然衰减过程开展探索及评价研究,曾在大庆油田和蒙古国Tamsag油田开展油污环境生态修复现场示范;在石油地球化学领域发表论文80余篇,在有机污染与重金属污染环境防控和生态修复方向发表论文120余篇。承担及完成国家级与国际合作科技项目10余项、省部级科技项目10余项和其它级别科技项目20余项;主持或骨干完成的科研成果获得国家自然科学二等奖1项、教育部科学技术进步一等奖1项、省部级科技进步三等奖3项、厅局级科技进步一等奖5项及二等奖5项。以第一作者出版科技专著及专业教材5部,指导博士生和硕士生获得高廷耀环保基金会全国博士生杰出人才奖学金、蔡冠深奖学金以及国家奖学金多项。主要学术兼职:国家重大科技专项会评专家,国家重大人才工程青年重点拔尖人才项目评审专家,教育部长江学者项目评审专家,国家自然科学基金重点和面上项目等评审专家,全国土壤-地下水修复网专家、上海市土壤-地下水污染场地评估专家,高等院校创新创业教育专业委员会委员,上海市环境学会土壤与地下水分会委员;自然杂志、东北石油大学学报等期刊编委,J Hazard Mater、ES&T、Bioresource Technology、ACS Appl Mater Inter、Environ Pollut、Journal of Soils & Sediments、Chemosphere、Sci Total Environ、Environ Sci Pollut R、Ecol Eng、Energy Environ Res、中国科学、化学通报、土壤学报、环境科学、上海交通大学学报、吉林大学学报等80多个相关专业期刊审稿专家。工作中多次被评为优秀教师、优秀共产党员、三八红旗手、教书育人先进个人、优秀指导教师等。


研究方向

1. 各类污染环境评价与修复方法研究;

2. 石油类污染湿地环境生态修复机理与技术;

3. 土壤-地下水中的污染物迁移转化与防控;

4. 油气生成与资源评价地球化学研究及油气水岩检测。


科研项目

主持和骨干承担国家自然科学基金面上项目、科技部“863”计划课题、国家重点研发计划重点专项课题及国际合作科技项目10余项,省部级科技项目10余项和其它级别科技项目20余项。


获奖情况

主持或骨干完成的科研项目成果获得国家自然科学二等奖1项、教育部科学技术进步一等奖1项、省部级科技进步三等奖3项、厅局级科技进步一等奖5项及二等奖5项;

主持或骨干完成的教学项目成果获得省级教学成果奖3项、校级教学成果奖2项,主编教材获得省部级优秀教材二等奖。

指导博士生和硕士生获得高廷耀环保基金会全国博士生杰出人才奖学金、蔡冠深奖学金以及国家奖学金多项,另外还有多人次获光华奖等其它奖项,全国研究生环境论坛二等奖3项,上海市大学生创新论坛创新奖、优秀论文奖、最佳实践项目各1项及优秀项目奖2项,有10余名硕博士研究生获得优秀毕业生。


代表成果

近年论著:

[1]刘晓艳,张新颖,陈学萍,等.土壤与地下水污染防控.中国石化出版社,2024

[2]刘晓艳,张新颖,程金平.土壤中石油类污染物的迁移与修复治理技术.上海交通大学出版社,2014

[3]刘晓艳,钱光人.自然环境灾害及其防御.中国石化出版社,2015

[4] Liu XY, Chen ZZ, Kong DW, et al. Synergistic action of Acinetobacter baumannii and Talaromyces sp.: Function of enzymes in crude oil degradation. Biochem Eng J. 2024, 201: 109144.

[5] Xie HH, Zhang XY, Liu XY*, et al. The isolation of benzo[a]pyrene-degrading strain and its cometabolic bioremediation with salicylic acid of long-term PAH-polluted soil. Land Degrad. Develop. 2023, 34(18): 5969–5982.

[6] Gao MJ, He LH, Mao Y, Chen ZZ, Zhang XY, Liu XY*, et al. The mechanism of nickel in nickel-pyrene-contaminated soil remediated by Bidens pilosa L. with applying polyaspartic acid, aminotriacetic acid, and tea saponin. Water Air Soil Poll. 2023,234: 155.

[7] Liu XY, Zhang SY, Zhang XY, et al. Cr(VI) immobilization in soil using lignin hydrogel supported nZVI: Immobilization mechanisms and long-term simulation. Chemosphere. 2022, 305: 135393.

[8] Liu XY, Ji JH, Zhang XY, et al. Microbial remediation of crude oil in saline conditions by oil-degrading bacterium Priestia megaterium FDU301. Appl Biochem Biotech. 2022,4:1-19.

[9] Liu XY, He LH, Zhang XY, et al. Bioremediation of petroleum-contaminated saline soil by Acinetobacter baumannii and Talaromyces sp. and functional potential analysis using metagenomic sequencing. Environ Pollut. 2022,311: 119970.

[10] Gao MJ, Gao BJ, Zhang XY, Fan JY, Liu XY*·et al. Effects of plant growth–promoting rhizobacteria (PGPR) on the phytoremediation of pyrene-nickel-contaminated soil by Juncus effusus. Water Air Soil Poll. 2022,233:458.

[11] Liu XY, Zhang SY, Zhang XY, et al. A novel lignin hydrogel supported nZVI for efficient removal of Cr(VI). Chemosphere. 2022, 301: 134781.

[12] Liu XY, Guo H, Zhang XY, et al. Modeling the transport behavior of Pb(II), Ni(II) and Cd(II) in the complex heavy metal pollution site under the influence of coexisting ions. Process Saf Environ. 2022, 162: 211-218.

[13] Jiao AX, Gao BJ, Gao MJ, Liu XY*, et al. Effect of nitrilotriacetic acid and tea saponin on the phytoremediation of Ni by Sudan grass in Ni-pyrene contaminated soil. Chemosphere. 2022,294: 133654.

[14]Zhang XY, Xie HH, Liu XY*, et al. A novel green substrate made by sludge digestate and its biochar: Plant growth and greenhouse emission. Sci Total Environ. 2021,797: 149194.

[15] Zhang XY, Gu PX, Liu XY*, et al. Effect of crop straw biochars on the remediation of Cd-contaminated farmland soil by hyperaccumulator Bidens pilosa L. Ecotoxicol Environ Saf. 2021, 219: 112332.

[16] Liu XY, Chen XT, Zhang XY, et al. Quantifying the influence of soil factors on the migration of chromium (VI). Process Saf Environ. 2021, 155: 32-40.

[17] Zhang XY, Kong DW, Liu XY*, et al. Combined microbial degradation of crude oil under alkaline conditions by Acinetobacter baumannii and Talaromyces sp. Chemosphere. 2021: 129666.

[18] Zhang XY, Su C, Liu XY*, et al. Periodical changes of dissolved organic matter properties induced by biochar application and its impact on downward migration of heavy metals under flood conditions. J Clean Prod. 2020, 275: 123787.

[19] Liu XY, Shen SY, Zhang XY*, et al. Effect of enhancers on the phytoremediation of soils polluted by pyrene and Ni using Sudan grass. Environ Sci Pollut R. 2020,27(33): 41639-41646.

[20] Tao KY, Zhang XY, Chen XP, Liu XY*, et al. Response of soil bacterial community to bioaugmentation with a plant residue-immobilized bacterial consortium for crude oil removal. Chemosphere. 2019, 222:831-838.

[21] Zhang XY, Su C, Liu XY*, et al. Effect of plant-growth-promoting rhizobacteria on phytoremediation efficiency of Scirpus triqueter in pyrene-Ni co-contaminated soils. Chemosphere. 2019, 241:125027.

[22] Zhang XY, Zhang YM, Liu XY*, et al. Cd uptake by Phytolacca americana L. promoted by cornstalk biochar amendments in Cd-contaminated soil. Int J Phytoremediat. 2019,22(3):251-258.

[23] Zhang XY, Chen J, Liu XY*, et al. Study on removal of pyrene by Agropyron cristatum L. in pyrene-Ni co-contaminated soil. Int J Phytoremediat. 2019,22(3):313-321.

[24] Zhang XY, Chen J, Liu XY*, et al. Nickel uptake and distribution in Agropyron cristatum L. in the presence of pyrene. Ecotox Environ Safe. 2019, 174:370-376.

[25] Zheng KW, Fan JY, Hu X, Zhang XY, Liu XY*, et al. Distribution by influence factors of pyrene removal in chemical enhancers assisted microbial phytoremediation of Scirpus triqueter in co-contaminated soils. Int J Phytoremediat. 2019,21(12):1190-1196.

[26] Zhang XY, Chen J, Liu XY*, et al. The relief effects of organic acids on Scirpus triqueter L. under pyrene-lead stress. Environ Sci Pollut R. 2019, 26(16):15828-15837.

[27] Liu XY, Mao Y, Zhang XY*, et al. Effects of PASP/NTA and TS on the phytoremediation of pyrene-nickel contaminated soil by Bidens pilosa L. Chemosphere. 2019,237.

[28] Wang CH, Gu LF, Ge SM, Liu XY*, et al. Remediation potential of immobilized bacterial consortium with biochar as carrier in pyrene-Cr(VI) co-contaminated soil. Environ Tech. 2019, 40(18):2345-2353.

[29] Yuan XY, Zhang XY, Chen XP, Kong DW, Liu XY*, et al. Synergistic degradation of crude oil by indigenous bacterial consortium and exogenous fungus Scedosporium boydii. Bioresource Technology. 2018,264:190-197.

[30] Zhang XY, Wang CQ, Liu XY*, et al. A durable and high-flux composite coating nylon membrane for oil-water separation. J Clean Prod.2018,193:702-708.

[31] Liu XY, Hu XX, Zhang XY, Chen XP*, et al. Effect of Bacillus subtilis and NTA-APG on pyrene dissipation in phytoremediation of nickel co-contaminated wetlands by Scirpus triqueter. Ecotoxicol Environ Saf. 2018,154:69-74.

[32] Liu XY, Cao LY, Zhang XY*, et al. Influence of alkyl polyglucoside, citric acid, and nitrilotriacetic acid on phytoremediation in pyrene-Pb co-contaminated soils. Int J Phytoremediat. 2018,20(10):1055-1061.

[33] Zhang XY, Wang CQ, Chai WB, Liu XY*, et al. Fabrication of Superhydrophobic Kapok Fiber Using CeO2 and Octadecyltrimethoxysilane. Environ Eng Sci. 2018,35(7):696-702.

[34] Wang CH, Gu LF, Ge SM, Liu XY*, et al. Remediation potential of immobilized bacterial consortium with biochar as carrier in pyrene-Cr(VI) co-contaminated soil. Environ Tech. 2018:1-9.

[35] Wei J, Liu XY, Wang CH, et al. Contrastive soil properties, microbial structure and soil enzymes in the rhizosphere of scirpus triqueter and bulk soil in petroleum-contaminated wetland. Environ Eng Manag J. 2018, 17(7): 1701-1709.

[36] Zhang XY, Wang CH, Liu XY*, et al. PVA/SiO2-coated stainless steel mesh with superhydrophilic-underwater superoleophobic for efficient oil-water separation. Desalin Water Treat. 2018,126:157-163.

[37] Tao KY, Liu XY*, Chen XP, et al. Biodegradation of crude oil by a defined co-culture of indigenous bacterial consortium and exogenous Bacillus subtilis. Bioresource Technology. 2017,224: 327-332.

[38] Liu XY, KY Tao, Sun J, et al. The introduction of woody plants for a freshwater wetland restoration alters the archaeal community structure in soil. Land Degrad. Develop. 2017,28(7):1933-1942.

[39] Chen X, Liu XY*, Zhang XY, et al. Phytoremediation effect of Scirpus triqueter inoculated plant-growth- promoting bacteria (PGPB) on different fractions of pyrene and Ni in co-contaminated soils. J Hazard Mater. 2016,325:319-326.

[40] Wei J, Zhang XY*, Liu XY, et al. Influence of root components of celery on pyrene bioaccessibility, soil enzymes and microbial communities in pyrene and pyrene-diesel spiked soils. Sci Total Environ. 2017,599:50-57.

[41] Yin TT, Zhang XY, Liu XY*, et al. Resource recovery of Eichhornia crassipes as oil superabsorbent. Mar Pollut Bull. 2017,118:267-274.

[42] Yin TT, Zhang XY, Liu XY*, et al. Spilled-oil sorbents prepared by recycling of Eutrophicated aquatic plants. Chem. Eng. Technol. 2017,40(1):170-176.

[43] Hu XX, Liu XY*, Zhang XY, et al. Increased accumulation of Pb and Cd from contaminated soil with Scirpus triqueter by the combined application of NTA and APG. Chemosphere. 2017,188:397-402.

[44] Hu XX, Zhang XY*, Liu XY*, et al. The contribution of pyrene degrading bacteria and chemical reagents to Scirpus triqueter phytoremediation of pyrene and Ni co-contaminated soil. Water Air Soil Pollut. 2017,228(8):295-304.

[45] Chen TR, Liu XY*, Zhang XY, et al. Assessment of Pb and pyrene accumulation in Scirpus triqueter assisted by combined alkyl polyglucoside and nitrilotriacetic acid application. Environ Sci Pollut R. 2017,24(23):19194-19200.

[46] Liu XY, Cao LY, Wang Q, et al. Effect of tea saponin on phytoremediation of Cd and pyrene in contaminated soils by Lolium multiflorum. Environ Sci Pollut R. 2017,24(23):18946-18952.

[47] Zhang XY, Liu XY*, Hu X, et al. Salix integra combined with Pseudomonas aeruginosa to restore diesel contaminated soils. J Environ Eng.2017,143(9): 04017037-1-7.

[48] Yin TT, Zhang XY, Liu XY*, et al. Cellulose-based aerogel from Eichhornia crassipes as oil superabsorbent. RSC Advances, 2016,6:98563-98570.

[49] Chen TR, Liu XY*, Zhang XY, et al. Enhanced Scirpus triqueter phytoremediation of pyrene and lead co-contaminated soil with alkyl polyglucoside and nitrilotriacetic acid combined application. J Soil Sediment. 2016,16(8):2090-2096.

[50] Chen X, Li HB, Liu XY*, et al. Combined remediation of pyrene-contaminated soil with a coupled system of persulfate oxidation and phytoremediation with ryegrass. Environ Sci Pollut Res. 2016, 23(20):20672-20679.

[51] Chai WB, Liu XY*, Zhang XY, et al. Preparation and characterization of polypropylene fiber-grafted polybutylmethacrylate as oil sorbent. Desalin Water Treat. 2016,57(39):18560-18571.

[52] Zhang XY, Wang CQ, Chai WB, Liu XY*, et al. Kapok fiber as a natural source for fabrication of oil absorbent. J Chem Technol Biot. 2016 ,92(7):1613-1619.

[53] Zou JC, Chai WB, Liu XY*, et al. Magnetic pomelo peel as a new absorption material for oil-polluted water. Desalin Water Treat. 2016,57(27): 12536-12545.

[54] Wang Q, Liu XY*, Zhang XY, et al. Influence of tea saponin on enhancing accessibility of pyrene and cadmium phytoremediated with Lolium multiflorum in co-contaminated soils. Environ Sci Pollut Res.2016, 23(6):5705-5711.

[55] Chen TR, Liu XY*, Zhang XY, et al. Effect of alkyl polyglucoside and nitrilotriacetic acid combined application on lead/pyrene bioavailability and dehydrogenase activity in co-contaminated soils. Chemosphere. 2016,154:515-520.

[56] Wang CH, Gu LF, Liu XY*, et al. Removal of pyrene in simulated wetland by joint application of Kyllinga brevifolia Rottb. and immobilized microbes. Int Biodeter Biodegr. 2016,96.

[57] Wang CH, Gu LF, Liu XY*, et al. Sorption behavior of Cr(VI) on pineapple-peel-derived biochar and the influence of coexisting pyrene. Int Biodeter Biodegr. 2016,111:78-84.

[58] Hou YY, Liu XY*, Zhang XY, et al. Rhizosphere phytoremediation with Cyperus rotundus for diesel-contaminated wetlands. Water Air Soil Pollut. 2016, 75:169.

[59] Hou YY, Liu XY*, Zhang XY, et al. Effect of key components of S.triqueter root exudates on fraction and bioavailability of pyrene-lead co-contaminated soils. Int J Environ Sci Technol. 2016,13:887-896.

[60] Li HB, Zhang XY, Liu XY*, et al. Effect of rhizodeposition on alterations of soil structure and microbial community in pyrene-lead co-contaminated soils. Environ Earth Sci. 2016,75:169.

[61] Li BB, Liu XY*, Zhang XY*, et al. Oil-absorbent polyurethane sponge coated with KH-570-modified graphene. J Appl Polym Sci. 2015,132(16): 41821.

[62] Li BB, Liu XY*, Zhang XY*, et al. Rapid adsorption for oil using superhydrophobic and superoleophilic polyurethane sponge. J Chem Technol Biot. 2015,90(11):2106-2112.

[63] Zou JC, Liu XY*, Zhong CL, et al. Effect of palmitic acid on remediation of Scripus triqueter and enzymes activities of the rhizosphere soil in the simulated diesel-spiked wetland. Int Biodeter Biodegr. 2014,94:109-114.

[64] Wang Q, Liu XY*, Wang CH, et al. Solubilization effect of surfactants on morphological transformation of cadmium and pyrene in co-contaminated soils. Water Air Soil Poll. 2015,226:147-156.

[65] Wei J, Liu XY*, Zhang XY, et al. Influences of hydrosoluble and lipophilic rhizodeposits on pyrene sorption in soil. Clean-Soil Air Water. 2015,43(10): 1401-1408.

[66] Zhang XY, Wang J, Liu XY*, et al. Potential of Sagittaria trifolia for phytoremediation of diesel. Int J phytoremediat. 2015,17(12): 1220-1226.

[67] Chai WB, Liu XY*, Zou JC, et al. Pomelo peel modified with acetic anhydride and styrene as new sorbents for removal of oil pollution. Carbohyd Polym. 2015,132: 245-251.

[68] Li BB, Liu XY*, Zhang XY, et al. Facile preparation of graphene-coated polyurethane sponge with superhydrophobic/superoleophilic properties. J Polym Res. 2015, 22:190.

[69] Li BB, Liu XY*, Zhang XY, et al. Stainless steel mesh coated with silica for oil-water separation. Eur Polym J. 2015,73: 374-379.

[70] Hou YY, Liu XY*, Zhang XY, et al. Identification of Scirpus triqueter root exudates and the effects of organic acids on desorption and bioavailability of pyrene and lead in co-contaminated wetland soils. Environ Sci Pollut Res. 2015, 22:17780-17788.

[71] Zou JC, Liu XY*, Chai WB, et al. Sorption of oil from simulated seawater by fatty acid modified Pomelo Peel. Desalin Water Treat. 2015,56(4):936-46.

[72] Chai WB, Liu XY*, Zhang XY, et al. Preparation and characterization of polypropylene fiber-grafted polybutylmethacrylate as oil sorbent. Desalin Water Treat. 2015(9):1-12.

近年授权专利:

[1]菖蒲对柴油胁迫生理响应特征的表征方法.2012年授权, ZL201110043819.2

[2]油污污染湿地的植物修复方法.2012年授权, ZL201010290943.4

[3]用于研究潮滩湿地污染物迁移转化特征的模拟装置.2012年授权, ZL201120204006.2

[4]一种手推式实验用沥油器. 2013年授权. ZL201320255173.9

[5]柱形沥油器. 2014年授权. ZL201420001534.1

[6]维护油田输水系统的固体制剂的缓释特征实验装置.2014授权, ZL201420083688.X

[7]通过构造氧化锌微细结构制备疏水亲油性棉织物材料的方法.2015授权, ZL201310261816.5

[8]疏水亲油性聚氨酯海绵的制备方法.2015授权, ZL201310267730.3

[9]一种利用氧化剂去除土壤芘污染的模拟实验装置.2015授权, ZL201420806919.5

[10]负载有杂化石墨烯涂层的聚氨酯海绵及其制备方法.2016授权, ZL201410474510.2

[11]构造氧化锌微细结构改性聚氨酯海绵表面的海绵材料及其制备方法.2016授权, ZL201410170974.4

[12]可调过滤式油水混合物分离的隔油池装置. 2018授权, ZL201510613150.4

[13]有流体状态下间断地注入药剂的污水管道药剂缓释装置. 2018授权, ZL201510977234.6

[14]亲油疏水型水葫芦纤维素气凝胶的制备方法. 2019授权, ZL201610466256.0

[15]一种苏丹草修复芘与镍复合污染土壤的方法. 2021授权, ZL201910483786.X

[16]具有水下超疏油性质的复合涂层的织物网及其制备方法. 2021授权, ZL201810145716.9

[17]一种采用污泥沼渣制备绿化植物基质的方法. 2021授权, ZL201910520400.8


教授课程

教学方面主讲环境地球化学、土壤污染与防治、环境工程创新技术、土壤污染防治技术、环境工程新技术及应用、生活中的环境安全与对策、环境化学、仪器分析、有机地球化学、污染环境生态修复、地球化学分析技术、油气地球化学、petroleum geochemistry等多门本科生及研究生课程,发表教研论文10余篇。

欢迎有志学生们加入我们的研究团队,欢迎有关专家学者和企业共商合作事宜!



版权所有 © 3499cc拉斯维加斯(官方VIP入口)-Global Best   沪ICP备09014157   沪公网安备31009102000049号  地址:上海市宝山区上大路99号    邮编:200444   网站:www.tasmhc.com
 技术支持:我校信息化工作办公室   联系我们 

Baidu
sogou